
International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 1

Stabilization and Motion Control of

Two-Wheeled Self-Balancing Mobile Robot Using

ROS2 and Gazebo Simulator

Nedal ALqerem1, Moayed ALmobaied2
1(Electrical Engineering Department, Islamic University of Gaza/ Engineering College, Palestine

Email: nalqerem@students.iugaza.edu.ps)

2 (Electrical Engineering Department, Islamic University of Gaza/ Engineering College, Palestine
Email: malmobaied@iugaza.edu.ps)

I. INTRODUCTION

The two-wheeled self-balancing mobile robot (TWSBMR)

is a nonlinear system consisting of a two-wheeled chassis and

an inverted pendulum body. It is an interesting underactuated

system that enables three degrees of freedom of motion (pitch,

yaw, and straight movement) with only two-wheel rotations

[1].The problem of balancing a two-wheel self-balancing
mobile robot has been extensively researched and is often

used as a benchmark for evaluating the performance of control

systems. A two-wheeled self-balancing mobile robot

(TWSBMR) can exhibit both linear and nonlinear behavior,

depending on the desired motions such as straight-line motion

or turning, and the control algorithms used to achieve these

motions. Over the past fifteen years, the control of

TWSBMRs has received significant attention due to their real-

time applications in various fields, including launching rocket

missiles, operating the popular Segway transporter, balancing

bicycles, designing humanoid robots, and many other

applications [2]. The Robot Operating System 2 (ROS2) is a

collection of open-source frameworks, tools, and libraries

used for the research and development of modern robots. It is

widely used as middleware for robots in both academic and

industrial settings [3, 4], and it is popular in the robotics
community due to its design for distributed real-time systems.

Considered the most powerful tool for developing modern

robotic software, ROS2 serves as a standard for robotic

applications that can be used on any robot [5, 6]. Every robot

platform's software stack requires a wide range of components,

including communication, architecture, networking modules,

hardware drivers, and robot algorithms. Instead of developing

these tools from scratch, developers can access them all in one

place through ROS2. Fig.1 provides a summary of the features

of ROS2, highlighting the key characteristics and capabilities

of this powerful robotic software platform.

RESEARCH ARTICLE OPEN ACCESS

Abstract:

 Nowadays, the use of robots and intelligent machines is growing exponentially, not only in terms of the number of possible

applications but also in their complexity. These technologies have proven effective in solving problems and improving solutions in

various industries, including manufacturing processes and transportation. The Robot Operating System (ROS) is one of the most

widely used tools for robot programming. ROS1 was initially developed in 2007 and has since gained popularity among the open-

source robotics community, particularly for academic projects. However, it is not yet widely used in industry because it lacks some

of the most critical requirements, including real-time capabilities, safety features, and security measures. A new version of ROS,

ROS2, was released in 2017 to address the limitations of ROS1 in terms of security and reliability. ROS2 offers quality-of-service

improvements, support for embedded systems, and real-time capabilities. ROS2 was developed with the goal of being used in

industrial projects and made compatible with industrial applications. As more sensors, actuators, and controllers are added to a

robot, programming it with custom code becomes increasingly complex and difficult to manage. ROS2 offers a solution to this

problem by providing a powerful robot application that can be used to create software with additional communication between

subprograms. The primary goal of this paper is to explore the control features and tools provided by ROS2 and the Gazebo

Simulator, which is commonly used in conjunction with ROS2. In this study, a self-balancing robot will be used as the robotic

application system. It is a nonlinear, underactuated system with a single input and multiple outputs. Firstly, the well-known PID

and LQR controllers will be implemented and programmed with ROS2. Then, the proposed controllers are used to stabilize the

system and visualize the result in a real-time implementation using the Gazebo Simulator.

Keywords — PID, LQR, ROS1, ROS2, SDF, Gazebo, RQT.

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 2

Although a large robotics community has contributed new
features to ROS1 since its start in 2007 [7], the design and

performance limitations of ROS1 led to the development of

ROS2, which effectively addresses these issues. The

architecture and features of ROS1 no longer satisfy the rapidly

evolving requirements of the robotics industry today due to

various issues, such as its limitation to a single robot system

and single platform, poor real-time performance and stability,

high network requirements, and a lack of sufficient

confidentiality. Consequently, ROS1 is increasingly failing to

meet the complex task requirements demanded by robots in

current environments. While ROS 2 was established with an
improved design that is suitable for use in both industry and

academia, it adds additional features including scalability,

security, performance, and an enhanced communication stack

that uses real-time data. This is particularly useful for

distributed systems with many robots and sensors, and it relies

on the Data Distribution Service (DDS) protocol [8]. ROS 2

also addresses issues related to non-ideal networks where

message delivery may be delayed or insecure. Table I

provides a comparison between ROS1 and ROS2 [9].

TABLE I

THE COMPARISONS BETWEEN ROS1 AND ROS2.

ROS1 ROS2

Uses TCP/IP
for communication

Uses the DDS

communication protocol

CMake is the only build
system used by ROS1.

Various build systems are

available for use with

ROS2.

Central registration and
discovery are performed by
ROS1 Master. If the master

fails, the information
transmission channel is

subject to failing.

Use the distributed

discovery system (DDS).

A special API is available

in ROS2 to get data on

nodes and topics.

ROS1 is only available for
the Ubuntu operating

system.

Ubuntu, Windows 10, and

OS X all operate with

ROS2.

Use Python 2 and C++
03

Use Python 3 and

C++11

There are several simulation tools integrated with ROS2, and

the Gazebo Robot Simulator will be used in this paper. The

simulator was utilized to construct the self-balancing robot

from scratch and generate SDF format files [10] that

accurately describe all the robot's characteristics and parts,

including sensors, surface properties, joint friction, and other

relevant properties for a robot. These SDF format files can be

used for robot control, motion planning, visualization, and

simulation. The integration of ROS2 and Gazebo is facilitated

by a collection of Gazebo plugins [11] that enable support for
a diverse range of existing robots and sensors. ROS2 utilizes

SDF formats to visualize a robot model. This file format can

be used to represent various robot characteristics, such as their
shape, color, joints, and other relevant properties.

The main contribution of this work is an exploration of the
control features and tools provided by ROS2, employing a

two-wheeled, self-balancing mobile robot as a robotic

application. The well-known PID and LQR controllers will be

implemented and programmed with ROS2, and the ROS2 plot

tool will be used to compare the response curves between PID

and LQR controllers in real-time data. The Gazebo Robot

Simulator will be used to show the simulation of the
TWSBMR in a live environment.

The rest of this paper is structured as follows: In Section II,

the core functionalities of ROS2 are discussed. The Gazebo

Simulator is briefly described in Section III. The mathematical

model, PID controller, and LQR controller of a two-wheeled

self-balancing mobile robot are presented in Section IV.

Section V shows the implementation of a two-wheeled self-

balancing mobile robot using ROS2 and the Gazebo Simulator.
Finally, some conclusions are drawn in Section VI.

II. ROS2 CORE FUNCTIONALITIES

As mentioned earlier, ROS2 (Robot Operating System 2) is

a robust framework for robotics development. It is open-

source software that provides tools, interfaces, and

components for building sophisticated robots. It allows

developers to connect actuators, sensors, and control systems

through a software system that includes various features and

tools to facilitate software development. These features and

tools can be summarized into two main points that aid in

understanding the big picture of ROS2:

A. Code separation and Communication Features

ROS2 offers a mechanism to divide your code into reusable

blocks and provides communication features that make it easy

to connect all your subprograms. For instance, you can create

a node for the camera, another for the hardware, and another

for navigation, and each independent block can communicate

with the others in a powerful and scalable way. Some of the

main communication features include the following:

 Nodes: In ROS2, processes that perform computation

are called nodes, and a system can contain multiple
nodes. Nodes communicate with one another through

the publication of messages to topics.

Fig.1 The ROS2 Content.

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 3

 Topics are used to exchange messages in

a publisher-subscriber pattern. Messages contain

information that is transmitted and can be of a standard

data type (integer, boolean, etc.) or a combination of

other types.

 Publisher-subscriber: In the publisher-subscriber

pattern, those who send information are called

publishers, and those who receive messages are called

subscribers. A publisher does not send information
directly to a subscriber but rather makes it available to

anyone who is subscribed to that topic. Subscribers will

only subscribe to publishers whose messages are

relevant to them.

 Parameters: Parameters in ROS2 are associated with

individual nodes and are used to configure nodes at start

up and during runtime without the need to modify the

code. The lifetime of a parameter is linked to the

lifetime of the node.

 Launch files: Launching multiple nodes one by one is

not practical, as it can be time-consuming and confusing.

With roslaunch, it is possible to launch all the nodes at

the same time.

 ROS2 bags: in ROS2, a message stream can be

recorded and saved to be replayed later.

In ROS2, a node can publish and subscribe to multiple

topics, and it is possible to have multiple subscribers and

publishers for the same topic. The messaging system of ROS
controls the details of communication between different nodes

via the anonymous publish/subscribe system. Fig.2 illustrates

the publisher, subscriber, and communication between

multiple nodes over a topic that contains a specific type of

message.

Fig. 2 ROS2: nodes, topics and messages.

B. ROS2 Tools

The second key benefit of ROS2 is that it provides

numerous tools and plug-and-play libraries that can save a
significant amount of time, and most importantly, prevent the

need to reinvent the wheel. Consider the difficulty of

computing a trajectory that enables a robot to avoid obstacles

while also collaborating with other robots. This task may seem

daunting and require extensive knowledge of mathematics,

algorithms, and related topics. However, with ROS2 tools, all

that is required is a little time to install a library and learn how

to use it. This enables access to a vast range of collaboration

tools and libraries that can simplify this complex task. ROS2

provides a range of tools that can help simplify the

development of robotics applications. Some of the most

important tools include:

 Command-Line Tool: ROS2 includes a comprehensive

set of command-line tools that can be used to monitor

and run a ROS2 system. These tools allow developers

to work with nodes, topics, services, and other objects

without requiring a graphical user interface. With over

45 command-line tools available, developers can access

all the core functionality and ROS2 tools they need.

ROS2 provides commands that can be used to launch

node groups and monitor topics, services, parameters,

and other system elements.

 RQT Tool: RQT is a graphical user interface (GUI)

framework that provides a collection of tools and

interfaces in the form of plugins, as well as the ability to

manage multiple windows on a single screen. The RQT

tool includes numerous plugins that allow for

visualizing a running ROS2 system, displaying nodes,

and the connections between them, as well as

facilitating debugging and understanding the running

system and its structure. It can monitor velocity,

encoders, position, or any variable that can be defined
as a number that changes over time. The RQT tool can

quickly provide an overview of projects with limited

information or that are growing rapidly. RQT provides

information about where the data is coming from and

where it is going.

III. GAZEBO SIMULATOR

Gazebo is a 3D dynamic simulator that can accurately and

efficiently simulate robot populations in complex indoor and

outdoor environments [12, 13]. It is considered one of the best

robotics simulators available. It is open-source and widely

accessible for simulating robots before building them. Gazebo
offers much more reliable physics simulations, as well as a set

of sensors and programming interfaces. It is commonly used

in real-world scenarios to test robotics algorithms, design

robots, and automate control methods. The integration

between ROS2 and Gazebo Simulator is provided by a

package of Gazebo plugins [11] that support several existing

robots and sensors. Because the plugins use the same message

interface as the rest of the ROS2 system, it is possible to build

ROS2 nodes that work with both simulation and hardware. In

this paper, a TWSBMR will be used as an example of a

simulation-ready application. Fig.3 shows a TWSBMR loaded
into a Gazebo simulator.

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 4

Fig. 3 Gazebo simulator with TWSBMR.

The integration of Gazebo with ROS2 is accomplished

through a set of packages called "gazebo_ros_pkgs." This

package contains a Gazebo plugin module for communicating

between Gazebo and ROS2. Gazebo can send simulated

sensor and physics data to ROS2, and ROS2 can send actuator

commands back to Gazebo. Gazebo can also be configured to

use a robot's ROS API [14]. After that, all robot software can

be run on both the real robot and the simulator.ROS2 and
Gazebo have the same relationship as ROS2 and the hardware

of a real robot. In ROS2, the controller receives data from

both the simulation and the real hardware on one topic and

publishes it to both the simulation and the hardware on

another. Simulation and real robot control can be performed

simultaneously, allowing for easy comparison of their

behavior and functionality. In fact, whether ROS2 controls a

real robot or a simulation model of a robot makes no

difference. The structure of the Gazebo simulation model is

illustrated in Fig.4. It consists of a model that describes the

robot, its plugins, and Gazebo libraries. The model receives
data from the Joint Command Interface and sends data back

through the Joint State Interface as feedback. The same holds

true for the hardware model illustrated in Fig.5, which is

linked to the ROS2 controller using the same interfaces. The

hardware model includes components such as a controller,

actuators, and sensors, which in Gazebo are replaced by

simulated ones via plugins and libraries [15].

Fig. 5 Principal robot hardware.

IV. MATHEMATICAL MODEL OF TWO-WHEELED SELF-

BALANCING MOBILE ROBOT

The schematic diagram of the TWSBMR system is

illustrated in Fig.6. The robot consists of two parts: the wheels

and the pendulum, which represents as the mass. The robot

with its three degree of freedom, can move linearly, which is

represented by position x; rotate around the z-axis (yaw) with

an associated angle 𝜓; and rotate around the y-axis (pitch)

with an associated angle 𝜃 .The system's inputs are torque 𝜏𝐿,

which is applied to the robot's left wheel, and torque 𝜏𝑅 ,

which is applied to the robot's right wheel. Table II contains

the parameter values for the TWSBMR.

TABLE II

PARAMETER VALUES FOR THE TWO-WHEEL SELF-BALANCING MOBILE ROBOT.

Symbol Parameter Value Unit

M
The mass of the pendulum

without wheels
0.388 𝐊𝐠

m wheel mass (left/right) 0.0377 𝐊𝐠

l
length from the center of the
pendulum to the wheel axis

0.157 𝐦

d
distance between the left and

right wheels
0.175 𝐦

r radius of wheels 0.0316 𝐦

J, k
wheel moment of inertia with
respect to the wheel axis and

the vertical axis

0.000233,

0.00002443
𝐤𝐠𝐦𝟐

I1
I2
I3

moment of inertia of the
pendulum with respect to the
frame at the center of mass of

the inverted pendulum

0.01687,
,0.01517
,0.05897

𝐤𝐠𝐦𝟐

Fig. 4 Principal robot simulation in Gazebo.

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 5

A dynamical model is first established in order to design a

controller for the TWSBMR, based on nonlinear robot models

cited in the literature [1]. The nonlinear equations of the
system are as follows:

(𝑀 + 2𝑚 +
2𝐽

𝑟2) �̈� − 𝑀𝐿(�̇�2 + �̇�2) 𝑠𝑖𝑛(𝜃) +

(𝑀𝐿 𝑐𝑜𝑠 𝜃)�̈� =
𝜏𝑅+𝜏𝑙

𝑟
 (1)

(𝐼2 + 𝑀𝐿2)�̈� + (𝑀𝐿𝑐𝑜𝑠(𝜃)) �̈�+

(𝐼3 − 𝐼1 − 𝑀𝐿2)�̇�2(𝑠𝑖𝑛𝜃)(𝑐𝑜𝑠 𝜃) − 𝑀𝐿𝑔𝑠𝑖𝑛 𝜃 = − (𝜏𝑅 + 𝜏𝑙) (2)

(𝐼3 + 2K + m
𝑑2

2
+ J

𝑑2

2𝑟2
− (𝐼3 − 𝐼1 − M𝐿2) (sin𝜃)2)�̈� +

(𝑀𝐿�̇� − 2(𝐼3 − 𝐼1 − 𝑀𝐿2)�̇� 𝑐𝑜𝑠 𝜃)�̇� 𝑠𝑖𝑛 𝜃 =
(𝜏𝑅−𝜏𝐿)𝑑

2𝑟
 (3)

For simplicity, it will be assumed that the TWSBMR only

moved in a straight line and that its two wheels acted as a

single unit. This resulted in a rotation about the z-axis (yaw),

with angle 𝜓 equal to zero. Considering the above
assumptions, equations (1) and (2) are linearized about

θ = π at the upright equilibrium position. Assume that

θ = π + ∅ where (∅ represents a small angle from the vertical

upward direction). The state-space form of the linearized
equations for the TWSBMR Will be:

[

 ∅̇

(𝑡)

∅̈(𝑡)

�̇�(𝑡)

�̈�(𝑡)]

 =

[

0 1 0 0
𝑀𝑔𝑙(2𝐽 + 𝑀𝑟2 + 2𝑚𝑟2)

2𝐼2𝑗 + 2𝐼2𝑚𝑟2 + 2𝑀𝐽𝐿2 + 𝑀𝐼2𝑟
2 + 2𝑀𝐿2𝑚𝑟2

0 0 0

0 0 0 1
−(𝑀2𝑔𝐿2𝑟2)

2𝐼2𝑗 + 2𝐼2𝑚𝑟2 + 2𝑀𝐽𝐿2 + 𝑀𝐼2𝑟
2 + 2𝑀𝐿2𝑚𝑟2

0 0 0
]

 +

[

0
−(4𝑗 + 2𝑀𝑟2 + 4𝑚𝑟2 + 2𝑀𝑙𝑟)

2𝐼2𝑗 + 2𝐼2𝑚𝑟2 + 2𝑀𝐽𝐿2 + 𝑀𝐼2𝑟2 + 2𝑀𝐿2𝑚𝑟2

0
 𝑟(2𝑀𝑙2 + 2𝑀𝑟𝑙 + 2𝐼2)

2𝐼2𝑗 + 2𝐼2𝑚𝑟2 + 2𝑀𝐽𝐿2 + 𝑀𝐼2𝑟2 + 2𝑀𝐿2𝑚𝑟2]

 𝑢(𝑡) (4)

In this study, the variables of interest are the robot's pitch

angle (∅) and position (x), and the output equation can be

written as:

 𝑦(𝑡) = [
1 0 0 0
0 0 1 0

]

[

∅(𝑡)

∅̇(𝑡)

𝑥(𝑡)

�̇�(𝑡)]

 (5)

Fig.6.The schematic diagram of the TWSBMR system.

A. PID Controller

There are many different types of control algorithms that

have been researched in the literature for the TWSBMR

system. One of the most popular controllers is the well-known

PID type algorithm [16, 17]. In this work, the Ziegler-Nichols

method was used to design PID controllers. Using the pitch

angle as the output and torque as the input, and utilizing the
system model in equation (4), the analysis of the tuning

process using MATLAB showed that the optimal response of

a PID controller for controlling the pitch angle of the robot is

achieved by setting KP = 1.62, KI = 7, and KD = 0.0938.

B. LQR Controller

 The linear quadratic regulator (LQR) is a widely known

linear system controller in industry. The LQR is the most

popular approach for designing state-space feedback controls

that take into account the states of dynamical systems and
control input to make the best possible control decisions

[18, 19]. LQR controllers use a linear mathematical model of

a system in state-space form. An optimal LQR estimates the

controller's gains using the system model described in

equation (4).The aim of the controller is to minimize the cost

function:

 𝐽 = ∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (6)

The weighting matrix Q is a symmetric positive

semidefinite matrix, while R is defined as a symmetric
positive definite matrix. For this controller design, only four

states will be considered, and as mentioned before, for

simplicity, the yaw angle and the velocity of the yaw angle
will be neglected. The control scheme is presented using the

system model described in equation (4). Therefore, using the

parameter values for the TWSBMR in Table II, the linearized

model is given by equation (7).

 𝑨 = [

0 1 0 0
49 0 0 0
0 0 0 1

−5.93 0 0 0

] 𝑩 = [

0
−792.1

0
221.55

] (7)

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 6

The gain 𝐾 = 𝑅−1𝐵𝑇𝑃 of control law 𝑢 = −𝑘𝑥 is obtained

by applying the performance index described in equation (6),

where P is a positive definite symmetric constant matrix that

can be obtained by solving the algebraic Riccati equation:

 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (8)

One of the popular approaches for calibrating the LQR

controller is to select Q and R as follows: 𝑄 = 𝐶′ ∗ 𝐶

and 𝑅 = [𝐼] .The controller gain K was computed using

MATLAB as follows:

K= [-1.6204 -0.2352 -1.0002 -0.6330].

V. TWO-WHEELED SELF-BALANCING MOBILE ROBOT

IMPLEMENTATION USING ROS2 AND GAZEBO

SIMULATOR

In this section, the TWSBMR is used to assess the core

capabilities and tools of ROS2, and the results are displayed in

real-time using the Gazebo Robot Simulator. First, the

software architecture of the TWSBMR is introduced. It will
start with a functional requirements analysis and then go into

the details of the implementation and the functional subtasks.

The following is a list of the functional requirements that must

be met in order to develop a software architecture for the

TWSBMR control system using ROS2:

 Retrieve data from the IMU sensor to determine the

pitch angle of TWSBMR.

 Retrieve odometer data from the wheel encoders to

know the robot's position.

 The TWSBMR can be controlled by velocity messages.

 The TWSBMR can balance itself vertically and reach

the desired position.

The software architecture of the TWSBMR is shown in Fig.7.

Fig. 7 TWSBMR software architecture.

An important principle of ROS2 is that robotics software

should be designed and developed as a distributed system. The

purpose is to separate the functions of a complicated system

into discrete parts that work with each other to produce the

desired behavior of that system. In ROS2, these parts are

known as nodes, and their interactions are known as topics

and, in some cases, services. A software architecture for

controlling the TWSBMR in ROS2 should be designed as a

distributed system consisting of nodes and topics that interact

with one another to produce the required system behavior.

Table III shows node names, types, and functions that are used

in building the software architecture for the TWSBMR in

ROS2.

TABLE III

NAMES OF NODES, TYPES OF NODES, AND NODE FUNCTIONS

Names of

Nodes

Types of

Nodes
Functions of Nodes

PID
Publisher/
Subscriber

Receives a data message from

the IMU sensor node, then
processes it and sends the

results of the processing to the
motor driver node.

LQR
Publisher/
Subscriber

Receives a data message from
the IMU sensor node, then
processes it and sends the

results of the processing to the
motor driver node.

Selfbalancing/
diff_drive

Subscriber
Receives data messages from

the PID controller node to
move the wheels.

Selfbalancing/
Imu_plugin

Publisher

Determines the robot's pitch
angle and position and sends

data to the PID or LQR
controller node.

A. ROS2 RQT- graph tool

 As mentioned earlier, ROS2 provides various tools and

plug-and-play libraries that facilitate understanding of the

running system. One such useful tool is RQT, which includes

a wide range of plugins. Among them, the RQT-graph plugin

is especially helpful in visualizing a running ROS2 system by

displaying nodes and the connections between them. Fig.8

illustrates the data communication between the publisher and
subscriber nodes for the TWSBMR using the RQT graph tool.

Fig. 8. RQT graph for TWSBMR nodes and topics.

This design separates the software into three ROS2 nodes: one

for the device driver, one for the IMU sensor, and one for the

PID or LQR algorithms. These nodes communicate with each

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 7

other, as shown above, via two ROS2 topics. This structure is

called a ROS2 communication graph, where the nodes are the

graph vertices, and the topics are the graph edges.

B. ROS2 RQT- dynamic reconfigure tool

When building a control system that requires precise

control parameters to reach its target at runtime, it is necessary

to continuously tune the control system parameters. This

involves updating the value of a parameter while a node is

running. ROS2 provides an efficient solution for this through

a tool called RQT-dynamic reconfigure. It allows users to

update parameters on the parameter server at runtime and

apply those changes to a specific active node. As a result, a

node can detect changes in a parameter's value without
needing to restart it.In this study, the RQT reconfigure tool

was used to change the PID control parameters' values during

runtime to observe their effect on TWSBMR, using the

Gazebo Simulator. Fig. 9 displays the slide bars built using the

RQT reconfigure tool, which were utilized to change the PID

controller node's values for TWSBMR.

Fig. 9 RQT dynamic reconfigure tool for ROS2 PID parameters

C. ROS2 RQT- plot tool

The final ROS2 tool introduced in this paper is the

RQT_plot tool, which can plot any numeric value published

by ROS2 topics and can also have multiple plots on the same

graph. It is useful for visually monitoring the data generated

by one or multiple nodes. The RQT_plot tool has the ability to

plot the pitch angle, angular velocity, and linear acceleration

for TWSBMR.

Figs. 10, 11, and 12 show the TWSBMR response curve using

the PID controller, while Figs. 13, 14, and 15 show the

response curve using the LQR controller. Both of these

response curves were plotted using the RQT_plot tool, which
can be used to plot the response of a real robot.

Fig. 10. PID- the response of the pitch angle (θ) of the robot using the

RQT_plot tool.

Fig. 11 PID- the response of the angular velocity (�̇�) of the robot using the

RQT_plot tool.

Fig. 12 PID- the response of the linear acceleration (�̈�) of the robot using the

RQT_plot tool.

Time (s)

Time (s)

Time (s)

A
n

g
le

 (
ra

d
)

A

n
g

u
la

r
V

el
o

ci
ty

 (
ra

d
/s

)

L

in
ea

r
A

cc
el

er
at

io
n

 (
m

/𝑠
2

)

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 8

Fig. 13 LQR- the response of the pitch angle (θ) of the robot using the

RQT_plot tool.

Fig. 14 LQR- the response of the angular velocity (�̇�) of the robot using the

RQT_plot tool.

Fig. 15 LQR- the response of the linear acceleration (�̈�) of the robot using the

RQT_plot tool.

VI. CONCLUSIONS

In this paper, the implementation and simulation of

TWSBMR using Robot Operating System 2 (ROS2) has been

successfully applied and tested in the Gazebo Simulator. The

effectiveness of ROS2 and the Gazebo Simulator for robotic

applications has been evaluated in this article. The main core

functionality for creating a simulation model of TWSBMR in

ROS2 and Gazebo is described. TWSBMR is used as a

robotic application system to explore control features, tools
provided by ROS2 and the Gazebo Simulator, and to visualize

the results in real-time implementation. TWSBMR was first

built using the Gazebo Simulator to generate the SDF format

file that would be used to implement the robot in ROS2. Then,

PID and LQR controller nodes were implemented in ROS2 by

designing the control code that includes an IMU sensor plugin,

motor plugins, and a model of the robot plugin to be used as a

control system to stabilize TWSBMR. As a result, the Robot

Operating System and the Gazebo Simulator provide powerful

tools for developing and controlling robots. Real-world
experiments for TWSBMR are to be conducted in future work.

REFERENCES

1. S. Kim and S. Kwon, “Dynamic modeling of a two-

wheeled inverted pendulum balancing mobile robot,”

International Journal of Control, Automation, and Systems,

vol. 13, no. 4,pp. 926–933,
2015.https://doi.org/10.1007/s12555-014-0564-8

2. F. Grasser, A. D'Arrigo, S. Colombi and A. C. Rufer,

"JOE: a mobile, inverted pendulum," in IEEE

Transactions on Industrial Electronics, vol. 49, no. 1, pp.
107-114, Feb. 2002, doi: 10.1109/41.982254.

3. ROS,”Core Components”, ROS.org. [Online]. Available:

https://www.ros.org/core-components [Accessed: March
05, 2020]

4. Pietrzik, S., and B. Chandrasekaran. "Setting up and

Using ROS-Kinetic and Gazebo for Educational Robotic

Projects and Learning." In Journal of Physics: Conference

Series, vol. 1207, no. 1, p. 012019. IOP Publishing, 2019,
doi: 10.1088/1742-6596/1207/1/012019.

5. ROS,” About ROS”, ROS.org. [Online].

Available:https://www.ros.org/about-ros [Accessed:
March 05, 2020]

6. A. -M. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera and N.

O. Salscheider, "Robot operating system: A modular

software framework for automated driving," 2016 IEEE

19th International Conference on Intelligent

Transportation Systems (ITSC), Rio de Janeiro, Brazil,
2016, pp. 1564-1570, doi: 10.1109/ITSC.2016.7795766.

Time (s)

Time (s)

Time (s)

A
n

g
el

 (
ra

d
)

A

n
g

u
la

r
V

el
o

ci
ty

 (
ra

d
/s

)

L

in
ea

r
A

cc
el

er
at

io
n

 (
m

/𝑠
2

)

http://www.ijeeejournal.org/

International Journal of Electrical Engineering and Ethics- Volume 6 Issue 2, March- 2023

ISSN: 2455-9771 http://www.ijeeejournal.org Page 9

7. OSRF, “Introduction to ROS2” , Open Sourse Robotic

Foundation.,

[Online].Available:https://osrf.github.io/ros2multirobotbo
ok/intro.html

8. DDS Foundation, ”What is DDS?”, Object Management

Group, Inc.,2019. [Online]. Available: https://www.dds-
foundation.org

9. SwRI, “ROS1 vs ROS2” , Southwest Research institiute.,

[Online].

Available:https://www.swri.org/industry/industrial-
roboticsautomation/blog/the-ros-1-vs-ros-2-transition

10. SDF Format, "What is SDF format”, [Online]. Available:
http://sdformat.org

11. github, ”Gazebo plugin”, [Online]. Available:
https://github.com/ros-simulation/gazebo_ros_pkgs/wiki

12. Gazebo Simulator: [Online]. Available:
https://gazebosim.org/docs

13. K. Takaya, T. Asia, V. Kroumov and F. Smarandache,

"Simulation environment for mobile robots testing using

ROS and Gazebo," 2016 20th International Conference on

System Theory, Control and Computing (ICSTCC), Sinaia,

Romania, 2016, pp. 96-101, doi:
10.1109/ICSTCC.2016.7790647.

14. OSRF , ”What is ROS API ?”, Open Sourse Robotic

Foundation.,

[Online].Available:https://osrf.github.io/ros2multirobotbo
ok/ros2_api.html

15. Gazebo ROS Control: , [Online]. Available:

http://gazebosim.org/tutorials?tut=ros_control&cat=conn
ect_ros

16. D. Pratama, E. H. Binugroho and F. Ardilla, "Movement

control of two wheels balancing robot using cascaded PID

controller," 2015 International Electronics Symposium

(IES), Surabaya, Indonesia, 2015, pp. 94-99, doi:
10.1109/ELECSYM.2015.7380821.

17. A. T. Ali, A. M. O. Mohamedy, A. S. A. Salimz, E. -A. O. M.

El-Aminx and O. M. K. Ahmed, "Design and

Implementation of Two-Wheeled Self-Balancing Robot
Using PID Controller," 2020 International Conference on

Computer, Control, Electrical, and Electronics

Engineering (ICCCEEE), 2021, pp. 1-5, doi:
10.1109/ICCCEEE49695.2021.9429579.

18. R. B¨uchi, State Space Control, LQR and Observer: step

by step introduction, with Matlab examples. Books on

Demand, 2012.

[Online].Available:https://books.google.com.tr/books?id=
JrofAgAAQBAJ.

19. M. Almobaied, I. Eksin and M. Guzelkaya, "Design of

LQR controller with big bang-big crunch optimization

algorithm based on time domain criteria," 2016 24th

Mediterranean Conference on Control and Automation

(MED), 2016, pp. 1192-1197, doi:
10.1109/MED.2016.7535907.

http://www.ijeeejournal.org/
http://sdformat.org/
https://github.com/ros-simulation/gazebo_ros_pkgs/wiki
https://gazebosim.org/docs
https://osrf.github.io/ros2multirobotbook/ros2_api.html
https://osrf.github.io/ros2multirobotbook/ros2_api.html

