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
Abstract—Adhesion control between wheel and rail is a
critical factor in the performance, safety and energy
efficiency of electric rail traction systems. This paper
proposes an adaptive fuzzy based approach for optimal
adhesion control in electric heavy duty rail traction. A
feedforward fuzzy logic network is trained using simulated
adhesion data derived from a dynamic traction model
incorporating wheel- rail creep forces and environmental
parameters. The proposed controller is integrated into a
vector controlled traction drive model in
MATLAB/Simulink. Simulation results demonstrates
improved adhesion utilization. A six-axle locomotive
dynamical model and empirical adhesion characteristic
are used to evaluate the methods in single- and multi-axle
scenarios. Simulation results demonstrate that the
proposed hybrid method substantially improves adhesion
utilization, while maintaining robustness across dry, wet,
and low-adhesion surfaces. The focus of this paper is on
analyzing the adhesion coefficient.

Keywords: Heavy-duty locomotive, adhesion control,
disturbance observer (DOB), fuzzy logic, support vector
machine (SVM), adhesion coefficient.

I. INTRODUCTION
A critical performance parameter in electric heavy duty rail

traction systems is adhesion control which eventually
determine the maximum tractive and braking forces that can
be transmitted between the rail and the wheels without
excessive slip. Figure 1 shows a six axle heavy duty
train .Therefore effective and robust adhesion control
strategies are essential to ensure both operational efficiency
and safety compliance. Traditional adhesion control
techniques typically rely on fixed parameter or simplified
wheel-rail models. While effective under steady conditions,
their performance deteriorate under nonlinear and time
varying scenarios such as wet or contaminated rails, variable
axle loads and dynamic braking demands [1].

Fig 1. Heavy duty six axle train

Recent advances in traction control and mechatronic systems
have enabled the application of intelligent estimation and
adaptive control techniques in electric locomotives. However,
the highly nonlinear and time-varying nature of wheel–rail
contact dynamics, combined with uncertain external
disturbances and varying rail surface conditions, makes real
time adhesion optimization a challenging problem [2].
In order to address these challenges, this study builds upon the
theoretical and experimental framework established. The work
systematically analyzes the physical mechanism of wheel–rail
adhesion, the locomotive traction system structure, and the
adhesion control process. The core contribution lies in the
design of an advanced adhesion control architecture that
integrates fuzzy rail-surface recognition, support vector
machine (SVM) classification, and a disturbance observer–
based torque control algorithm [3].

II. LITERATURE REVIEW
Adhesion control is one of the most crucial areas in traction
control. Conventional proportional–integral (PI) and
threshold-based control algorithms exhibit limitations in
dynamic performance and robustness when the adhesion
coefficient changes abruptly [4].
The nonlinear and time-varying nature of the wheel–rail
contact makes these classical techniques less effective under
adverse operating conditions. Recent advances in model-based
and intelligent control techniques have sought to address these
limitations [5].

A.Wheel–Rail Adhesion Mechanism
The locomotive traction force action model is shown in figure
2 where M is the axle load (23t/25t for heavy-duty
locomotives), g is the gravitational acceleration (usually 9.8
m/s²), T is torque in Nm, r is radius in m, ɷd is angular speed
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in rad/s, vt train speed in m/s, Ft traction force in N and Fad
adhesion force and normal reaction force N or Mg. The
rotational speed ɷd of the wheelset is always higher than the
forward speed vt of the car body. The slip velocity sv :

s d tv r v   (1)

The adhesion state can be intuitively expressed by the
adhesion coefficient. Due to the complexity of the rail surface
condition, the adhesion coefficient is a dispersed random
quantity but obeys corresponding statistical laws. Although
there is no mathematical expression between creep or slip
velocity sv and adhesion coefficient µ, empirical curves of

slip velocity and adhesion coefficient, i.e., adhesion
characteristic curves, can be obtained through a large number
of experiments.

� = �
�

(2)

From equation (2), it can be seen that the locomotive traction
force Ft is proportional to the adhesion coefficient μ. The
adhesion characteristic curve can reflect the variation of
traction force i.e. figure 3.
The tractive capability of a locomotive fundamentally depends
on the adhesion coefficient between the wheel and the rail.
Therefore, it follows that the adhesion coefficient is related to
the one with the maximum value of traction force without
stopping adhesion. So every adhesion control system tries to
operate in this maximum adhesion zone without overshooting
by continuously monitoring this peculiar point i.e. the dashed
point in figure 3. However the main challenge is that this
relationship is a complex one and is a nonlinear function of the
slip velocity sv .

s sav bvce de    (3)

where a, b, c, and d are parameters that depend on the rail
surface condition (dry, wet, or low adhesion).Typical values
for a heavy duty train are shown in Table I.

Fig.2 Adhesion mechanism
When the driving torque exceeds the available adhesion force,

the wheel begins to slip, leading to energy loss and accelerated
wear [6]
Table 1.Rail calculation parameters

Track
condition

a b c d
sv , µmax

Track1(dry) 0.54 1.2 1 1 1.2,0.286
Track2(wet) 0.1876 0.54 0.4 0.4 3.002,0.1487
Track3(low
Adhesion)

0.54 1.2 0.4 0.4 1.2099,0.1145

This curve exhibits a rapid rise in adhesion with small
increases in slip velocity, reaching a peak value at the critical
slip point, and gradually declining beyond it.

Fig.3 Analysis curve for adhesion characteristics
B. Single-Axle Dynamic Model
In order to analyze the adhesion control process, a single-axle
locomotive dynamics model is developed using the derivation
formulae, as shown in Fig. 2. The driving torque generated by
the traction motor passes through the gearbox to the wheelset,
while the adhesion force (Fad) or Fadhesion between wheel and
rail propels the train forward.
The rotational motion of the wheelset and the translational
motion of the vehicle are governed by

m
m m L
dJ T T
dt


   (4)

adhesion
L

g

F rT
R


 (5)

m
g

d

R 


 (6)

= m gT T R (7)

2
m gJ J R  (8)

adhesim on

g
m m

Fd
R

T rJ
dt
 

   (9)

Angular
speed
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s
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(10)

m d gR   (11)

( )s
L

g

v W g rT
R

   
 (12)

( )d s
dJ T v W g r
dt
       (13)

tF T r (14)

2
jM J r (15)

( )j d t s
dM v F v W g
dt

     (16)

the slip ratio can be expressed as:
r vs
v

 
 (17)

A positive slip ratio indicates driving slip, while a negative
value corresponds to braking slip. Where J is the equivalent
rotational inertia of the wheelset, Tm is the motor
electromagnetic torque, Rg is the gear ratio. The final model is
shown in figure 4 [7].
C. Vehicle-Controlled Adhesion System Structure
In a vehicle-controlled traction system, all axles receive
coordinated torque commands from a single controller,
ensuring that torque distribution among multiple traction
motors remains balanced.
The control loop typically consists of four subsystems:
1. Driver command unit – provides the reference traction

torque.
2. Adhesion controller – estimates adhesion state and

computes optimal torque command.
3. Torque control subsystem – executes fast torque

adjustments through motor current regulation.
4. Locomotive plant – represents the wheel–rail dynamics

and mechanical motion.
This structure forms the basis for designing adaptive and
observer-based adhesion control algorithms presented in
subsequent sections.

D. Adhesion Characteristics under Different Conditions
Simulation and empirical measurements reveal distinct
adhesion parameters under typical environmental conditions.
A representative set of parameters, is shown in Table I. The
three distinct graphs have the same characteristics increasing
then decreasing after a certain critical point shown in figure 8.

E. Model Validation and Simplifications
The model captures the essential nonlinear coupling between
wheel rotation and vehicle translation while maintaining
simplicity for controller design. The mechanical resistance

term dF is modeled as

( ) ( )t s d t
dM v v W g F v
dt

     (18)

2( ) ( )d t t tF v a b v c v M g       (19)

where a, b,​ and c represent basic rolling, viscous, and
aerodynamic resistance coefficients respectively. The terms a,
b, c are resistance calculation coefficients. The resistance
coefficients for the heavy-duty electric locomotive in this
paper are shown in Table II below:

Table II. Resistance coefficients
Parameters Value
a 1.67
b 0.0014
c 0.000297

Neglecting higher-order elastic effects of wheel and rail
simplifies the model sufficiently for real-time simulation and
control testing on a hardware-in-the-loop (HIL) platform [8].

Fig.4 Single axle dynamic model.

III. PROPOSED ADHESION CONTROL STRATEGY AND
ALGORITHM DESIGN
A. Overall Control Framework
In order to ensure stable traction performance and optimal
adhesion utilization under varying track conditions, a hybrid
adhesion control system is proposed.
The overall architecture integrates intelligent rail-surface
identification, adhesion estimation, and disturbance-observer-
based torque control into a unified two-layer framework. This
structure forms a closed feedback loop linking the motor
torque command, adhesion coefficient, and rail condition
classification.

B. Rail-Surface Identification

This paper uses the centroid method for surface identification.
Let the membership function of the fuzzy set K surface on the
universe U be μ K(u). In the universe U,

 1 2U , , , nu u u L the membership degree of iu is ( )iK u ,
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then the value K surface clear can be calculated by the
following equation

1

1

( )

( )

n

i i
i
n

i
i

u K u
K

K u









(20)

After defuzzifying the fuzzy quantity, its value range is
determined by the fuzzy subset obtained from fuzzy inference.
The numerical range of these fuzzy subsets may not be
consistent with the required numerical range later, requiring
scaling transformation, which requires the scaling factor K
scale. In this paper, the numerical ranges are consistent, so the
scaling factor K scale is taken as 1.

The output after defuzzifying the fuzzy quantity is processed
by the data conversion module to obtain the rail surface state
identification coefficient K surface. When the output is less
than 0.5, the rail surface state identification coefficient K
surface value is 0, representing a wet rail surface. When the
output is greater than 0.5, the rail surface state identification
coefficient K surface value is 1, representing a dry rail surface.
The surface identification block diagram is shown in figure 5
below.

max

6kv v
 (21)

max

6k 
 (22)

Fig.5 Surface identification block diagram

To enable adaptive control, a two-stage identification
mechanism is developed: fuzzy feature extraction followed by
SVM classification.

 1) Input Features
Measured or estimated variables used for surface recognition
include: slip velocity ( sv ), slip acceleration ˆsv , Torque

derivative mT and adhesion coefficient variation rate (��).These
features are normalized to [0, 1] before processing.

 2) Fuzzy Feature Extraction
A fuzzy inference system converts raw signals into linguistic
features describing the surface adhesion tendency.
Membership functions are defined for Low, Medium, and
High adhesion levels based on ( sv ) and ( mT ).
Fuzzy rules:

1. IF sv is small AND mT is small → Surface = Dry

2. IF sv is medium AND mT is moderate → Surface =
Wet

3. IF sv is large AND mT is high → Surface = Low
Adhesion

The fuzzy output vector 1 2 3[ , , ]f f f f represents the
degree of membership for each condition.

 3) SVM Classification
The SVM classifier receives the fuzzy feature vector f and
performs final classification using a radial basis function (RBF)
kernel:

1
( ( , ) )
Ns

i i i
i

Label sign K f f b 


  (23)

where (Ns) is the number of support vectors, i and i are

training coefficients and b is the bias term of the SVM
decision function and (.)K is the RBF kernel.
The output label (Dry, Wet, or Low Adhesion) determines
which set of adhesion parameters (a, b, c, d) is applied to the
model in Eq. (1) [9, 10, 11].

C. Disturbance Observer–Based Adhesion Estimation
In order to address model uncertainties and unmeasurable
disturbances (e.g., rail contamination, load transfer), a
disturbance observer is introduced into the torque control loop.
The dynamics of the wheelset are given by Eq. (4):

 L̂ m m m
aT T J s
s a

   


(24)

s
ˆˆ (v ) g
L

R
T

W g r
 

 
(25)

Fig.6 Adhesion estimation module/Disturbance observer.
In equation 24, � is the observer pole of the disturbance
observer. Different configurations of the � value obtain
different performances. In this paper, � = [100, 10000] can
make the observer performance stable and quickly converge.
From equations 24 and 25, the observed values L̂T and µ� can
be obtained. The observer module is shown in figure 6 [14,15].

D. Adaptive Torque Control Law
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The control objective is to maintain operation near the
maximum adhesion coefficient ( max ), corresponding to the

optimal slip velocity ,( )s optv i.e. dashed line in figure 3.The
complete block module is shown in figure 7.

Fig.7. Torque control

adhesion PIT T T  (26)

g g
PI P L I L

R R
T K T K T

W g r W g r
    

   
& (27)

The gain parameters KP and KI are adjusted according to rail
condition (wet, dry, low adhesion).
This adaptive adjustment ensures robust performance under
both high and low adhesion conditions. The step-by-step
execution of the proposed system can be summarized as
described. This closed-loop process continuously adapts to
track variations and disturbance effects in real time, ensuring
stable and efficient adhesion utilization [16, 17, 18].

IV. SIMULATION AND RESULTS ANALYSIS
A. Simulation Setup
A single-axle locomotive simulation model was established
for comparative simulation analysis. Four scenarios were
investigated. The initial traction torque was mT = 6300 Nm.
The simulation environment changed from a dry rail (0-4s)
surface to a wet rail surface (4-10s) and then back to a dry rail
surface (10-20s).
To verify the effectiveness of the proposed hybrid adhesion
control method, a MATLAB/Simulink simulation model was
developed based on the theoretical framework discussed in
Section III. The model consists of the following subsystems:
 Rail-Surface Identification Module (Fuzzy + SVM)
 Adhesion Observer and Adaptive Torque Controller
 Single-Axle Traction Dynamic Model
 Adhesion Model
Simulation parameters were selected to reflect a typical heavy-
duty electric locomotive configuration, as shown in Table III.

Table III. Heavy duty simulation parameters

Parameter Symbol Value Unit
Wheel radius r 0.45 m
Axle load N 1.5 × 10⁵ N
Vehicle
mass(per axle)

M 1.2 × 10⁴ kg

Rotational
inertia

J 75 kg·m²

Rated motor
Torque

Tmax 700 Nm

Simulation step
time

Ts 0.001 s

B. Adhesion–Slip-Characteristics
Three rail-surface conditions (dry-track 1, wet-track 2, and
low adhesion-track 3) were tested using parameters from
Table I. Figure 8 shows the adhesion–slip curves generated
from the exponential adhesion model for three rail conditions.
The results confirm that peak adhesion decreases and the
optimal slip velocity shifts rightward as the rail becomes more
slippery

Fig.8. Slip curves under different conditions

C. Slip Velocity and Adhesion Coefficient Tracking
Figure 9 illustrates the corresponding estimated and actual
adhesion coefficients, showing accurate tracking by the
observer even under abrupt rail-condition changes. It should
also be realized at this point that for the adhesion coefficient
two value were measured. The bottom graph is for the real
value obtained from equation (3) and the other is the estimated
obtained from model formulation using static quantities in this
case equation (25). Equation (1) is complex and its solution
is difficult to get.
Adhesion tracking

http://www.ijeeejournal.org


International Journal of Electrical Engineering and Ethics- Volume 9 Issue 1, January-
February - 2026

ISSN: 2455-9771 http://www.ijeeejournal.org Page 28

Fig.9 Adhesion Coefficient under various control

D. Vehicle Speed and Adhesion Utilization
The improved adhesion coefficient regulation enhances total

traction effort and results in smoother vehicle acceleration.
Figure 10 shows vehicle speed trajectories: under low
adhesion, the proposed controller achieves about 5 % higher
final velocity without excessive slip.

Fig.10 Vehicle speed response under varying adhesion
conditions.

Adhesion utilization efficiency is defined as:

0

max max

( )
100%

.

T

eff
actual

t dt
or x

T





 




(28)

Simulations indicate  ​ =0.92 for the proposed method
versus 0.75 for the traditional control, confirming improved
adhesion exploitation.
The designed adhesion control method module based on the
disturbance observer ran in the single-axle locomotive
simulation. The comparison diagram between the estimated
locomotive adhesion utilization coefficient and the actual
adhesion utilization coefficient of the locomotive in the
simulation is shown in Figure 9. The below graph is the actual
rail surface adhesion utilization curve of the locomotive in the
simulation, and the above graph is the locomotive adhesion
utilization curve estimated by the disturbance observer under
different scenarios. The two adhesion utilization curves for
each graph are basically consistent, which shows that the
locomotive adhesion utilization curve estimated by the
disturbance observer is accurate and can be used as a basis for
locomotive adhesion control judgment.

E. Summary of Results
Performance
metric

Traditional
method

Proposed
method

improvement

Adhesion
utilisation

0.75 0.92 +22%

Speed
Fluctuation

±2.5 % ±1.0 % 60% reduction

These results demonstrate that the proposed hybrid
controller provides superior adaptability and robustness under
diverse rail conditions, ensuring stable traction and improved
hauling efficiency.

F. Discussion
The simulation confirms that integrating fuzzy–SVM surface
identification with a disturbance observer–based torque
controller enables rapid recognition of changing adhesion
states. The architecture is scalable to multi-axle locomotives
and suitable for real-time implementation on embedded
processors or hardware-in-the-loop (HIL) platforms.

V. CONCLUSION
This paper proposed a fuzzy network-based approach for
optimal adhesion control in electric heavy duty rail traction
systems. Unlike threshold-based controllers that rely on
empirical torque reduction ratios, the proposed algorithm
responds proactively by estimating the adhesion limit and
compensating for dynamic disturbances.
The proposed hybrid adhesion control method demonstrates
enhanced dynamic response, improved robustness, and higher
adhesion utilization efficiency across diverse rail conditions.
These results validate the feasibility of integrating intelligent
surface identification with adaptive torque regulation for
heavy-duty locomotives.
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